Skip to main content

Web Content Display Web Content Display

News

Breadcrumb Breadcrumb

Web Content Display Web Content Display

How our enzymes protect themselves

How our enzymes protect themselves

Protein S-persulfidation (P-SSH) is recognized as a common posttranslational modification. It occurs under basal conditions and is often observed to be elevated under stress conditions. However, the mechanism(s) by which proteins are persulfidated inside cells have remained unclear. Very recent work from University of Heidelberg in collaboration with the Max Planck Research Group at the JU Małopolska Centre of Biotechnology (JU MCB) shows how this small chemical modification can be installed by a direct enzymatic reaction.

The work identified 3-mercaptopyruvate sulfurtransferase (MPST) as one of the key enzymes in generating and maintaining protein persulfides in human cells. The ground-breaking results were recently published in Nature Chemical Biology.

Researchers from the Max Planck Research Group at the JU MCB contributed their recently established tools and expertise to the study from the Dr Tobias P. Dick’s group at the University of Heidelberg, Germany. The team experimentally confirmed the hypotheses that protein persulfides can be generated from an enzymatically-driven process. This is surprising, taking into account how enzymes facilitate and speed up chemical reactions. It was known that MPST takes away the sulphur from 3-mercaptopyruvate, a product of cysteine transamination, generating a persulfide on the active site cysteine of MPST. Nonetheless, the published study now clearly shows that this persulfidated MPST then transfers the persulfide outer sulphur to other substrates, including protein thiols. Foremost, the authors show that depleting MPST levels in human cells also reduced overall levels of protein persulfidation. Vice versa, increasing MPST levels induced cellular protein persulfidation levels. These results convincingly show that MPST is a key in protein persulfidation in our cells.

The Kraków team headed by Dr hab. Sebastian Glatt recently also revealed that a downstream target of MPST, namely Urm1, can also transfer sulphur from its thiocarboxylated C-terminus onto cysteines in certain target proteins. The combined results of the studies have defined a novel pathway to post-translationally modify proteins and their enzymatic function, which are highly relevant for protecting ourselves against oxidative stressors and to the process of ageing.

The work was supported by funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 101001394, PI Sebastian Glatt).

Recommended
Prof. Piotr Jedynak elected the new Rector of the Jagiellonian University

Prof. Piotr Jedynak elected the new Rector of the Jagiellonian University

Jagiellonian University to manage the PAAR-net COST Action grant

Jagiellonian University to manage the PAAR-net COST Action grant

JU doctoral students in international research consortia

JU doctoral students in international research consortia

Jagiellonian University in the QS World University Ranking by Subject 2024

Jagiellonian University in the QS World University Ranking by Subject 2024